donvnal of Artificial Intelligence Hesearch 4 (1996) 1709-208 Submitted 11788; published 4796

Practical Methods for Proving Termination of
General Logic Programs

Elena Marchiori BLENAGIOWLNL
Centrum voor Wiskunde en Informatica {CWI)
PO Bowy 84079, 1090 GB Amsterdam, The Netherlonds

Abstract

Termination of logic programs with negated body atoms (here called goneral logic
programs) is an important topic. One reagson is that many computational mechaniss
used o process negated atoms, like Clark’s negation as failure and Chan’s constructive
negation, are based on termination conditions. This paper introduces a methodology for
proving termination of general logic programs w.r.t. the Prolog selection rale, The idea is to
distinguish parts of the program depending on whether or not their termination depends on
the selection rule. To this end, the notions of low-, weakly up-, and np-aecceptable program
are introduced. We use these notions to develop a methodology for proving termination
nf general logie programs, and show how inferesting preblems in non-monotonic reasoning
can be formalized and implemented by means of terminating general logic programs,

1. Introduction

Gieneral logie programs (GLIs for short) provide formalizations and implementations for
special forms of non-monotonic reasoning, as illustrated by Apt and Bol (1994) and Baral
and Gelfond (1994). For example, Prolog's negation as finite failure operator can be used
i implement the temporal persistence problem in Artificial Intelligence as a logic program
(Kowalski & Sergot., 1986; Evans, 1900; Apt & Bezem, 19891). The implementation of
aperators like Clark’s negation as failure (Clark, 1978) and Chan’s constructive negation
{Chan, 1988), is based on termination conditions. Therefore the study of termination of
GLP's (e, De Schreye & Decovte, 1994) is an important topic,

Twu classes of GLP's that behave well w.r.t. termination are the so-called acyelic and
acceptable programs (Apt & Bezem, 1991; Apt & Pedreschi, 1991). In fact, Apt and Bezem
(1091 prove that if negation as finite failure is incorporated into the proof theory, then
fur any wevelic program, all sld-derivations with arbitrary sclection rule of ground queries
terminate, The converse of this vesult, fe., if a program terminates for all ground queries,
then it is aeyvelie, holds only under the assumption that the program is ‘non-floundering’.
Aptand Pedreschi {1891 establish analogous results on termination for so-called acceptable
programs, this time wort. the Prolog selection rule, which selects the leftmost literal of a
aguery.,

Floundering is an abnormal form of termination which arises as soon as a non-ground
negated atom is sclected, as explained eg., in (Apt & Bol, 1994). To {reat also non-ground
negated atoms, Chan (1988) introduced u procedure known as Chan’s constructive negatinn.
Using Chan's constructive negation, Marchiori (1996) showed that the notions of acyclicity
and acceptability provide a complete characterization of programs that terminate for all
wronnd queries.

Wriaes AT Access Fouadation and Morgan Kaufmann Publishers, Al rights resorved.

MARCHIORT

The notion of acceptability combines the definition of acyclicity with a semanric condi-
tiom, and thevefore proving acceptability may be rather cumnbersome. The aim of this paper
is tn develop a methodology for proving termination with respeet to the Prolog selection
rule, by using as little semantic information as possible. A program P is split inte two
parts, say Py and Py; then one part is proven to be acyclic, tlie other one to be acceptable,
and these vesults are combined to conclude that the original program is terminating w.r.t,
the Prolog selection rule, The decomposition of P is done in such a way that no relations
defined in Py occur in Py, We introduce the notions of up-acceplability, where Py is proven
1o be acceptable and Py to be acyelic, and of low-acceptability, which treats the converse
case (F% acvelic and % acceptable). In order to be of more practical use, the notion of
ap-acceptability is generalized to weuk up-ucceptebility. We integrate these notions in a
bottom-up methodology for proving termination of general logic programs. We apply our
results to programs formalizing problems in non-monotonic reasoning, In particular, we
show that the planning in the blocks world problem can be formalized and implemented by
means of an up-acceptable program. This provides a class of queries (up-bounded queries)
that can be completely answered.

Even though our main theorems (Theorem 5.5, 6.4 and 7.2} deal with Chan’s construe-
tive negation only, a simple inspection of the proofs shows that they hold equally well for
the case of negation as finite failure.

Our approach provides a simple methodology for proving termination of GLP’s, hy com-
bining the results of Bevem, Apt and Pedreschi on acyelic and acceptable programs. The
relevance of this methodology is twofold: for a large class of programs, it overcomes the
drawbnek of the method of Apt and Pedreschi {1991), namely the use of too much semantic
information; and it allows to identify those parts of the program whose termination is de-
pendent on the use of the Prolog selection rule. Moreover, the examples that are given, show
that systems based on the logie programming paradigm provide a suitable formalization and
implementation for problems in non-monotonic reasoning.

The paper is organized as follows. The next section contains some terminology and
preliminaries. In Seetions 3 and 4 the notions of acyclicity and acceptability are presented.
Yeetions 5, 6, amd 7, contain our alternative definitions of acceptability. In Section 8 these
definitions are integrated in a methodology for proving termination, Finally, in Section 9
sowie conclusions are given. This paper is an extended and revised version of (Marchiori,
1995).

2. Preliminaries

The following notation will be used. We follow Prolog syntax and assume that a string
starting with a capital lettor vepresents a variable, while other strings represent constants,
terms and relaiions. Relation symbols are often denoted bwv p,g,r. A literal is either an
atom plsy,..., %), or a negated atom ~plsy,..., 8}, or an equality s = £, or an inequality
Y5 # t), where ¥ quantifies over some (perhaps none) of the variables vcourring in s, .
Equalities and inequalities are also called consiraints, and denoted by . An inequality
Wis 5 t) is primitive if it is satisfiable but not valid. For instance, X # « is primitive. An
{extended) general logic program, denoted by P, K, is a finite set of clauses

H L*g,...,L",..

180

PRrRovING TERMINATION OF GENERAL LOGI1C PROGRAMS

with m > 0, where M is an atom, and L, is a literal, for ¢ € [I,m]. A guery is a Hnite
sequence of literals, and is denoted by Q.

Tor treat negated non-ground atoms, Chan {1988) proposes to augment sld-resolution
with n procedure, informally described as follows. For a substitution 8 = {X,/¢,,..., X,./L.},
we denote by Eg the equality formula (X = t; A... A X, = 1,). For any negated atom —4,
il all the sld-derivations of 4 are finite, and #,, ..., 8, with k > 1), are the computed answer
substitutions. then the answers for -4 arc obtained from the negation of 3(Ep, v...V Ey,),
where 3 quantifies over the variables not ocenrring in 4. For instance, consider the program

pla) +.
plb) .

The answer to the query —p{X) is X # a A X # b We call sldenf-resolution, sld-
resolution augmented with Chan's procedure. To show the correctness of sldenf-resolution,
we choose as program semanties the Clark’s completion (Clark, 1978). This semantics is a
natural interpretation of a GLP as a set of defimitions. Intuitively, the Clark's completion
of a program P, denoted by comp(F), is the first-order theory obtained by replacing the
implication of each clause of P with an equivalence. It is constructed as follows. Below, ¥
quantifies over X, ..., Xp.

» For every relation symbal p occurring in £, having say k£ >) arguments:
- if p does not ovcur in the head of any clause then add the formuls
T{pl Xy, ..., Ni) o false);

~ ntherwise, if & = 0 then add the formula p = frue; if b > 0 and Oy, ..., C), with
{ = 1 are all the clauses of P with head symbol p, with C; = p(s]...., sfe) — ()i,
then add the formula ¥{p(X,, ..., X3} =~ V,‘ﬂ;g,g](%'l},(t‘}, M Gy)), where W, is the
set of variables of O, By is () = Xy AL sl = Xy, and Xy,..., X are fresh
variables.

o Finully, the following free cguality azioms are added, so that the equality theory of
comp(F'} hecomes the same as the one of the Herbrand universe.

XL X =fYo oY= (X =Y A A Xy = 1)),
for everv funetion symbol f,
= S LX) #E e Y,
for every distinet function syinbols f and g,
- X # s
for every term s 8.0, X occurs in 4.

The sounuduess of sldenf-resolution w.r.t. Clark’s semantics follows from
comp{P) = VA — 3 Eg, v .. v By),

where ¥ quantifies over all the free variables of the formula. sldenf-resolution is complete
only for queries having all terminating derivation. In fact. Chan’s procedure is not defined
if .1 has an infinite derivation. As & consequence, the notion of {infinite) derivation is

181

MarCHIORE

not always defined. This is a problem for the study of termination of GLP's, because
the notion of derivation is of erucial importance. Therefore, we refer here to an alternative
definition of Chan's procedure given by Marchiori (1996), where the subtrees used to resolve
negative literals are built in a topedown way, constructing their branches in parallel. As a
consequence, the main derivation is infinite if at least one of these subtrees is infinite.

Termination of GLP's depends on the selection rule, For instance, the program

P 4.p-
terminates if the Prolog selection rule, which chooses the lefimost literal of a query, is
used. But, the program does not terminate if the selection rule which chooses the rightmost
literal of o query is used. We shall consider the generalization of the Prolog selection
rule to programs containing constraints, which delays the sclection of primitive constraints
as follows: the leftmost literal of 8 query which is wot a primitive inequality is chosen,
For simplicity, we continue to refer 1o this selection rule as the Proloy selection rule. An
sldenf-tree that is obtained by using the Prolog selection rule is called ldcnf-tree.

To prove termination of logic programs, suitable functions from ground atoms to natural
munhers, called level mappings, will be used. Let Bp denote the Herbrand base of P,

Definition 2.1 (Level Mapping) A level mapping (for P) i3 a function | | from Bp to
uatural numbers. .

A level mapping is extended to negated ground stoms by [~A) = |4]. We do not need to
extend this notion also to constraints. because they represent terminating atomic actions.
However, note that the presence of constraints in a query influences termination, because,
for justance, a derivation finitely fails if an unsatisfiable constraint is selected.

3. Acyclic Programs

Our method will be based on the notions of acyclicity and acceptability, which are used
to characterize a class of terminatiog programs w.r.t. an arbitrary and the Prolog selection
ride, respectively. In this section we recall the definition of acwvelicity, and some useful
results from {Marchiori, 1996), while acceptability will be disenssed in Section 4.

Apt and Bezem (1991) study termination of 6LP's w.r.t. an arbitrary selection rule.
They introduce the following elegant syntactic notion.

Definition 3.1 (Acyelic Program) A program P is seyelic wv.l. a level mapping | | if
for all grownd instances H « Ly, ... L, of clavses of P we have that [H| > |L,; holds for
all # < 1 < nst. Ly is not a constraint, P is eeyelie if there exists a level mapping | | 5.1,
P ig acyelic wort, { |, E

If a program is acyelic, then all ground queries have only finite derivations, and hence
terminate. To extend this result to non-ground queries, the following notion of boundedness
is used.

Definition 3.2 (Bounded Query) Let || be o level mapping. A query Q@ = Ly, ... L, is
hownded {wort. | 1) if for every 1 <4 < n, the set

2l = {1L] | E} is a ground instance of L,}

182

Proving TervmvaTion oF GeNeral, Logic PROGRAMS

is finite. o

Notice that ground queries are bounded. Apt und Bezem prove that for an acyelic
program, every bounded query ¢ has only finite derivations w.rt. negation as finite failure.
The converse of this result doss not hold, due to the possibility of floundering. Instead, using
Chan's constructive negation, we obtain a complete characterization {Marchiori, 1996).

First, we formalize the concept of termination w.r.t. an arbitrary selection rule.

Definition 3.3 (Terminating Query and Program) A query is lerménating (w.r.t. P)if
all its sldenf-derivations (in P} are finite. A program P is terminating if all ground queries
are terminating word, 2. 0

Theorem 3.4 Let P be an weyelic progmm and let @@ be o bounded guery. Then every
sldent-iree for () in P contains only bounded queries and is finite.

Theorem 8.5 Let P be o terminaling progrom. Then there exists a level mopping | | 8.4
(i) 17 is acyclic wort, || (i) for every query QQ, @ is bounded werd. || iff @ is terminating.

From Theorems 3.4 and 3.3 it follows that terminating programs coineide with acyelic
programs and that for acyelic programs a query has a finite sldenf-tree if and only if it
is honnded, Notice that when negation as finite failure is sssumed, Theorem 3.5 does not
hold, For instance, the program:

plE) «~ = q(¥).
q{s(X)) «~ q(X).
q{0} +—.

ix rerminating {flonndering} but it is not acvclic.

Finding a level mapping for proving acyelicity is a creative process. We refer the reader
to {0 Schreve & Decorfe, 1994) for a thorough presentation of various techniques for
comstructing level mappings.

The following section ilustrates how an interesting problem in nonmonetonic reasoning
ran be formalized and implemented as an acyelie program.

3.1 An Example: Blocks World

The blocks world is a formulation of a problem in Al, where a robot performs a number
of primitive actions in a simple world (see for instance Nilsson, 1982). Here we consider
a siwmpler version of this problem by Sacerdoti (1977). There are three blocks e, b, ¢, and
three different positions p, g, + on a table, A block can lay either above another block or
o one of these positions, and it ¢can be moved from one position to another, The problem
consists of specifying possible configurations, i.c., those oblained from the initial situation
by performing & sequence of possible moves. An example of an initial sitnation is given in
Fignre 1.

Feowalski (1979) gives a clansal representation of this problem by means of pre- and post-
conditions. Here we formulate the problem using MeCarthy and Hayes' sitnation caleulus

183

MaRCHIORI

L

Figure L: The Blocks-World

{(MeCnarthy & Hayes, 1969), in terms of facts, events and situations, There are three types
of Jacts: locf{X, L) stands for ‘block X is in location L' abowe(X,Y) for ‘block X is on
Block ¥7'; and elear(L) for ‘there is no block in location L°. There is only one type of event:
move(X, L) stands for ‘move block X into loeation L', Finally, situations are described
using lists: || denotes the initial sitnation, and [Xe|Xs] the situation obtained from X
by performing the event Xe. Based on the above representation, the blocks world can be
formualized as the following GLP BLOCKSWORLD:

1} holds(l,[]) ~.1le L

2} block(bl) — . ble 8

3) position(pl) « . ple P

4) holds(loc(X,L), [move(X,1)|Xs]) —
block{X),
position{L},
holds{clear{top(%)),Xs),
holds(cleaxr(L),Xs),

L # top(X).

5y holds(loc(X,L),[XeiXs]) &
block(X),
position(L),
= abnormal{loc{X,L),Xe,Xs),
holds{loc(X,L),Xs).

f#) holds{above(X,Y},Xs) «~
holds{loc(X,top(¥)),Xs).

7} holds(above(X,¥),Xs) &
holds(loc(X,top(Z)),Xs),
holds(loc(Z,top(¥)),Xs).

8) holds(clear(L),Xa) «

- oeenpied(L,is) .
9 abnormal (lec(X,L) ,move(X,L*),¥s) ».

184

ProvinG TERMINATION OF GENERAL LOGIC PROGRAMS

11} occupied(L,is)~—
holds{loe(X,L),Xs).

11} legals([(a,L1}, (b,L2),(c,L3}],%8) +~
holds{loc(a,Ll) ,Xs),
holds (Qoc(b,L2),X8),
holds{(loc(c,L3) ,X8).

Here top(X) denotes the top of block X, B = {a, b, e}, P = {p, q. v, top{n), tep(b}, tep{c)},
and £ = {loc{a, p). loe(d,) loc(e, r)}. Moreover, lines 1, 2 and 3 abbreviate sets of clauses,
and line 1 specifies the initial situation. The relation holds describes when a fact is possible
i w given sitnation, and the relation legals when a configuration is possible in a given
situation.

Consider the following level mapping, where for a ground term y, |y denotes the length
of the list y, otherwise {i.e., if y is not a list) y| is 0.

block{x)l = 0,
Iposition(x)| = 0,
labnermal{x, y,)| =0,

3wyl +1 if 2 is of the form loe(r, s},
3=yl +3 if zis of the form clear(r, s},
Ixlyl+4 ifais of the form sbove(r, s),
0 atherwise,

[holds(x,)| =

weeupied(z, g} = 3 |y + 2,
degals(e,y)l = 3+ iy + 2.

It is easy to check that BLOCKSWORLD is acyclic writ. ||

Therefore, the class of questions expressed by means of bounded queries can be com-
pletely answered. For instance, the question ‘when block e remains in it initial position p
under the sceurrence of an action?’ can be formalized as the query holds (loe(a,pd , [A1).
This query is bounded, hence every of its sldcnf-derivations is finite, with answer VL({A
meve{a, LYY

Note that this query would flounder when negation as finite failure is used.

4. Acceplable Programs

[the previous section, we have seen how tenmination of GLP's w.r.t. an arbitrary selection
rule cun he proven by means of the notion of acyclicity. The notion of acceptability (Apt
& Podreschi, 1991) is used for proving termination of GLP'S w.r.i. the Prolog selection rule.
In this section, we recall this notion, together with some useful results from (Marchiord,
1996). Acyelicity and acceptability will be combined in the following sections to provide
more practical tools for proving termination of GLP's w.r.t. the Prolog selection rule.

In order to study termination of general logic programs with respect to the Prolog
selection rule, Apt and Pedreschi (1991) introduced the notion of aceeptable program. This

185

MARCHIOR!

notion s hased on the same condition used to define acyclic programs, except that, for a
ground instance H — Ly ..., L, of a clanse, the test |H| > |Li] is performed only until the
first literal Ly which fails. This is sufficient since, due to the Prolog selection rule, literals
after L;, will not be selected. To compute 7, a class of models of P, here called specinlized
muodels, is used. The following notion is used, The restriction of an interpretation [to a
set § of relations, denoted by Ig, is the set of atoms of I having their relations in S.

Definition 4.1 (Specialized Model) Let Negp be the least set 5 of relations s.t.: the
relations of P occurring in negated atoms are in S and if an element of § ocours in the
head of a clause, then all the relations occurring in the body of that clause arve in 5. Let
P~ be the set of clauses in P whose head contains a relation from Negp. Now a model |
of P is specialized if I)y,q, i a model of comp(P~). i

Drefinition 4.2 (Acceptable Program) Let | | be a level mapping for P and let 7 be an
interpretation of P. P is accepiable w.ord. || and {1 is a specializved model of P, and
for all ground instances H «— Ly, ..., L, of clauses of P we have that [H| > |L;]| holds for
every 1 <04 € T s.t. Ly is not a constraint, where 71 = ndn{{n} U {i € Ln] | T & L;}}). Pis
acceptable if it is acceptable w.r.t. some level mapping and interpretation. O

If a program is acceptable, then every ground query has only finite ldcnf-derivations,
bence it terminates. To extend this result to non-ground queries, as for the acyclic case,
the following notion of boundedness is used.

Definition 4.3 (Bounded (uery) Let | | be a level mapping and let T be a specialized
model of P. A query (2 = Lj...., L, is bounded {w.r.t. || and I) if for every 1 £ i < n

[= {1L] (.’l,...,LE gronnd instance of Ly,....L; and
=1, !Lv:—l}

is finite. 0

Apt and Pedreschi prove that for an acceptable program, every bounded guery has only
finite derivations w.r.t. the Prolog selection rule and negation as finite failure. The converse
of this result holds when Chan’s constructive negation is used (Marchiori, 1996). First, we
formalize the coneept of termination w.r.t. the Prolog selection rule,

Definition 4.4 (Left-Terminating Query and Program) A query is left-terminating
{w.r.t.) if all its ldcnf-derivations are finite. A program P is left-terminating if every
ground guery is left-terminating w.r.t. P. o

Theorem 4.5 Let P be an acceptable program and let Q be o bounded query. Then every
ldent-dree for () in P contains only bounded queries and is finite.

Theorem 4.6 Let P be a left-terminating program. Then there exists o level mapping | |,
and a specialized model [of P a.t.; (1) P is acceptable w.r.t. | | and I; (ii) for every query
¢}y € is bounded wor.t, || and I iff Q is left-terminating.

In the following section an acceptable program that formalizes planning in the blocks world
I8 given.

186

PrOVING TERMINATION OF GENERAL LOGIC PROGRAMS

4.1 An Example: Planning in the Blocks World

Counsider planning i the blocks world, smounting to the specification of a sequence of
possible moves transforming the initial configuration into a final configuration, e.g., as
in Figure 2. This problem can be solved using a nondeterministic algorithm (Sterling &
Shapiro, 1994): while the desired configuration has not yet been reached, find a legal action,
npdate the current configuration, and eheck that it was not alrendy obteined. The following
program PLANNING follows this approach: it consists of all the clauses of the program
BLOCKSWORLD, minus 6} and 7), and plus the following clauses:

¢
h [b
o R, P——
] < a
P q r p g r

Figure 2: Planning in the Blocks-World

lp) transform(Xs,8t,Plan) «
state{St0),
legals(5t0,%s),
trans{is,St, [St0] ,Plan}.

2p) trans{Xs,5t,Vie,[1)
legals(St,Xs).

3p) trans(¥s,8t,Vis, [Actlicts]) «
state(St1),
- member(Sti,Vis),
legals(8tl, [4ct|Xs]),
trans([Act|Xe],St, [8t11Vis] ,Acts).

4p) state{[(a,L1),(b,L2},(c,L3}]) «
P=[p,q,r,top(a),top(b),top(c)],
member (L1,P),
member (L2,P),
member (L3,P).

Sp) member(X,[X|Y]) «.

187

Manrecnion

fip) member(X,[¥Y12]) «~
membex (X,2) .

Planning in the blocks-world is specified by the relation transform: in clause lp) first a
legal configuration for the actual situation is found by means of the predicate legals: then
the predicaie trans i8 used to construct incrementally a plan from this configuration to
the finn! one. It uses an accumaulator as third argument, to guarantee that a plan does not
pass twice through the same configuration. Clause 3p} takes care of expanding a plan: it
first looks for a configuration which was not already considered, and then it adds to the
plan the legal action yielding that configuration. Clause 2p) guarantees termination of the
construction when the final configuration is reached.

To prove the acceptability of PLANNING, we have to find & model of PLANNING that is
alse o model of comp({3p). 6p} U BLOCKSWORLDA{6},7),11}}). We do not need to use all
this semantic information, because from the acyvelicity of BLOCKSWORLD, it follows that
PLANNING is left-terminating if the following program TRAS is acceptable. We postpone the
justification of this elaim till the next section.

I'p} transform{Xs,St,Plan) «
atate (5t0),
trans(Xs,5t, [5£0] ,Plan).
p) trans(Xs,St,Vis,[]) ~.
¥p} trans(Xs,5t,Vis, [Act|Acts]) «
state(St1),
- member{St1,Vis),
trans{[Act|Xs],S8t, [8t1|Vis], Acts).
ip} state({(a,L1},(b,L2),{c,L3)]) &
P=[p,q,r,topla),top(b),toplec)],
member (L1,P),
member(L2,P),
member(L3,P}.
Sp) member{X,[X|Y]) .
ip] member(X,[Y|Z]) ~
member{X,Z) .

ThAS 18 obtained from PLANNING by first deleting the subprogram ‘defining’ legals, and
next the literals with relation legals oceurring in the body of the remaining elauses. By
considering TRAS, we need less semantic information, namely 4 model of TRAS that is also a
model of comp({5p),5)}). To show that TRAS is acceptable, we consider the following level
mapping:

imernber{z, g}l = |y):
jstate(z) = 7;
rans(z, y, 3, w)| = tot ~ card(el(z) (1 5) + 3 {[£] + 1) +5 + |z};

188

Proving TERMINATION OF GENERAL LOGIC PROGRAMS

Prans form{z,y, 2)] = tot + 3 (x| + 1} + 6.

Ahove, § denotes {[{a.p1), (b, p2), (e, p3}] | {p1,p2 p3} C {p.y, v, top(a), top(d), teple)}
and ot is the cardinality of §. Moreover, if z s a list then el{z) denotes the set of its
elements, otherwise i denotes the empiy set; card(el{z} N S) is the cardinality of the set
el{2)M 5. finally, if x Is a list then |2] denotes its length, otherwise it denotes . Observe that
(tof — card{el(z) M &) 2 0. Thus | | is well defined. For an atom p(s), ..., 8,), we denote
by [p(s1,...,54)] the set of all its ground instances. Consider the following interpretation
= l\tmnslform U Ttrans U Jememper Y Lstare of TRAS, with:

Ttvans form = [trans form{X, Y, Z),

Ttrans = [trans(X, Y, Z, W)},

Linember = {member{z,y} | y is a list s.t. x € get{y)},
Litatr = {state(x) | z € S}.

It is easy to prove that [iz a model of TRAS. Moreover, Negua, = {member}, and
TrAST is equal to {5p),6p}}. S0, Jjjmemter) i5 2 model of comp(TRAST). To show that
IRAS is acceptable war.t. J and | |, we use the following properties of | |, which arve readily
verifiod:

[trans form{z,y, 2)|; = 8, (1}
ltrans{x, g, z,w)| > 8, {2)
ltrans{z, y, 2, w)) > |z]- {3}

The proof of the accepiability of TRAS proceeds as follows:
o Consider a ground instance:
trans form{xs, i, plan) + state(sth), trans(zs, st, [st0], plan).
of 1p). From (1} it follows that:
[transform{xs,wl, plan}| > |state(st0)].

Suppose that T &= stele(s10). Then xt0 € S, so card{el{S Mel{[st0]}) = 1; hence:

ltrans form{xs, ol plan)| = {{rens(cs, st, [si0], plan}].

» Consider a ground instance:
trans(xs, st, vis, [artlacts]) —
state(sil), ~member(stl, vis), trons([act|xs], 51, [st1|vis], nets).
of 2'p). From (2) it follows that:

ltrans(zs, st, vis, [actlacls])| > |slate(stl}],

189

MARCHIORE

and from (3):

[trans(zs, st, vis, [actjacts))| > |~member(stl, vis)|.

Suppose that [b state(stl), ~member{stl,vis). Then st1 € 5, but stl & set(vis);
so card(§ Mel{[sttivis]}) = card(S M el{vis)) + 1; hence tot — card(S N ed{[stlivis])) <
tot — cord(S riel{vis)). Therefore,

[trans(zs, st, vis, [actlacts])| > |trans(|uct|zs], st, [st1|nis], avls).

e The proof for the other clauses of TRAS is similar,

5. Up-Acceptability

In this section, we introduce a first integration, called up-acceptability, of the notions of
acyelicity and acceptability. We show that up-acceptability provides a more practical tool
thinn acceptability for proving lefi-termination of GLP's.

in Section 4.1 we claim that in order to prove lefi-termination of PLANNING, it is sufficient
to prove accaptability of the *part’ of PLANNING called TRAS and acyclicity of the rest of the
program. Let us explain how we arrive to this conclusion. First, PLANNING is partitioned
into two parts: an upper part, say Py consisting of clauses 1),...,6), and a lower part, say
R. counsisting of the rest of PLANNING, This partition is such that no relation defined in
2 gceurs in B, This kind of partitioning of a program is defined by Apt, Marchiori and
Palamidessi (1994) as follows,

Suy that a reletion s defined in P if it oceurs in the head of at lenst one of its clauses,
and that a lteral is defined in P if its relation is defined in P,

Definition 5.1 (Program Extemsion) A program P extends a program R, denoted by
P » R, il no relation defined in P oveurs in R, 0

So I extends £ if P defines new relations possibly using the relations defined already
in . For instance, the program Py

p o 4.7
extends the programm Py:

q — 8.
8 .

Next, we consider the program TRAS obtained from Py by deleting all the literals defined
in . We call this operation difference, defined as follows.

Definition 5.2 (Difference of Two Programs) The difference of the programs P and R,

denoted by P& R, ig the program obtained from P by deleting all the clauses of B and all
the Hterals defined in R. o

180

ProvING TERMINATION OF GEMERAL LOGIC PROGRAMS

For instance, if Py and P are defined as above, then P & Py is the program p— 1.

Fiually, we prove that TRAS is acceptable and that R is acyelic, and in doing that we
have to take care that the two level mappings used are related by a condition, namely that
for every ground instance, say ¢ = H « 1, L, s, of a clause of Py, for every literal L
contaived in € and defined in R, the level mapping of L is not greater than the level mapping
of If. This condition is important to ensure lefi-termination. For instance, consider the
program &

1) qCE(X)) — p(¥), q(X).
2) pCE(X)) — p(X).

nnd take Py = {1})} and R = {2)}. Then P, extends R, Py © R is acceptable w.r.i. the level
mapping J¢{ci p, = |x|, R is acyelic w.r.t. the level mapping |p(x)ig = |z, but P is not
left-terminating,

So. the steps we applied o PLANNING are summarized in the following definition of
up-aceepiability, that characterizes left-terminating programs.

For a level mapping | | and a program R, the restriction of | | {6 R, denoted | | (g, is the
level mappiny for £ defined by {4]p = |4].

Definition 5.3 (Up-Acceptability) Let | | be a level mapping for P. Let R be st
P = Py U R for some Py, and let I be an interpretation of P o3 R, P Is up-acceptable w.r.t.
||, R and I if the following conditions hold:

l. P extends 1

2. P Ris acceptable wrt. | | pag and I

3. R is acyelic wort. | g

4. for every ground instauce H « Ly, ..., L, of a clause of Py, for every 1 <i < n,

s if I; is defined in R and s not a constraint, and

o if f = Lyy,..., Lig. where Ly, ..., Ly are those literals among Ly, ..., L; whose
relations occur in P& R,

then |H| > |L,].

A program is up-eccepfable if there exist | |, B and [s.t. P i8 up-acceptable w.rt. | |, R, {.
m}

Observe that by taking for R the empty set of elauses, we obtain the original definition
of acceptability. Next, we introduce the notion of up-bounded query.

Definition 5.4 (Up-bounded Query) Let P be up-acceptable w.r.t. | |, it and I, and let
(= Ly,..., Ly) 15 up-bounded if for every 1 €1 < n the set

QI = (LY | Li,..., L), is a ground instance of @ and [k= Ly, Ao ALy}

is finite, where L}, ..., Ly are the literals of L}, ..., L, whose relations occur in P & R.
a

1491

MagreHionR!

In order to show that all 1denf-derivations of an up-bounded query are finite: we shall
prove that a ldenf-derivation of an up-bounded guery contains only up-bounded queries;
and we shall associate with each derivation of the guery a descending chain in the well-
fonnded set of pairs of multisets of natural numbers, with the lexicographic order. Recall
that a maultiset (see e.g., Deshowitz, 1987} is a unordered collection in which the number
of oeenrrences of each element is counted. Formally, a multiset of natural numbers is a
function from the set {N, <) of natural numbers to itself, giving the multiplicity of each
patural mumber. Then, the ordering <, on multisets is defined as the transitive closure
of the replacement of a natiral number with any finite mumber {possibly zero) of natural
nwnbers that are smaller under <. Sinwe < is well-founded, the induced ordering <, I8
also well-founded. For simplicity we shall omit in the sequel the subseript mul from <.

With an up-hounded query @, we associate a pair 7(Q) = (Qllup.t py: [Qlnp,s 1} of
multisets, where for a program P and an interpretation J

NQ upur.p = bug(maz| Q... maz| Q).
where Ly, Ly, are those literals of () whose relations ocour in P &3 R, and ma:x| 3;"’"
i the maximum of | (which is by convention 0 if |Q*""' is the enapty set).

Recall that the lexicographic order < {on pairs of multisets) is defined by (X, V) <
(2. W aff either X <« Z, o0 X = Z and }* < W.

Then we can prove the following result,

Theorem 5.5 Suppose that P is up-acceplable w.rd. ||, B and 1. Let €} be an up-bounded
guery. Thew every ldenf-devivation for € in P contains ondy up-bounded gueries and is
Jinite.

Proof. Let £ s (Q1,...,Qu, ... be a ldenf-derivation for ¢} in P. We prove by induction on
nthat (), is up-bounded, and that if it is the resolvent of a query Qn-; by the selection of
a literal which is not a constraint, then 7(Qn)eps < T{Qu-1 Jupi-

For the base case n = 1, we have that @ is up-bounded by assumption. Now consider
se > 1, and suppose that the result holds for n ~— 1. Thus, @, - is up-bounded. Suppose
that the resolvent of €, is defined and that the selected literal, say L, is not a constraint.
It follows from the fact that 2, s up-bounded and from the definition of up-acceptability
{here also condition 4 is used) that €, is up-bounded. Next, we show that #{Q,)u,,; is
smaller than 7{Qly-1laps in the lexicographic order. [f the relation symbol of L occurs
in P& R then the first component of w(Qy)y, becomes sialler because of condition 2.
Otherwise, if the relation symbol of L occurs in R then the first component of 5{Qn)ups
does not increase because of condition 1, while the second one becomes smaller because of
eondition 3. The conclusion follows from the fact that the lexicographic ordering is well-
frunded, and from the fact thal, in a derivation a constraint can be consecutively selected
only & finite number of times. O

Example 5.6 (PLANNING is Up-Acceptable) Call R-BLOCKSWORLD the program ob.
tained from BLOCKSWORLD by deleting the clauses 6) and 7). We prove that PLANNING is
up-aceeptable w.r.t. | |, B-BLOCKSWORLD, and I defined as in the examples of Sections 3.1

192

PrOVING TERMINATION OF GENERAL LOGIC PROGRAMS

amd 4.1, PLANNINGSR-BLOCKSWORLD is (not incidentally) the program TiAS. The proof
of up-seceptability proceeds as follows.

1. PLANNING extends B-BLOOKSWORLD.
2. It s proven in Section 4.1 that TRAS is aeceptable,
3. It is proven in Section 3.1 that R-BLOCKSWORLD acvelic.

4. Consider a ground instance
transform{c, s,p) « state(s0), lequls{s0, c), trans(c, 3, [s0], p).
of 13, and suppose that [|= state{s0). Then
[trans form(e, 8,p) =tot + 3% {le + 1)+ 6 > 3+ |e| + 2 = |legals(s0,)|
Consider a ground instance
trans(e,s,v,|]) «— legais{s, c).
of 1). Then
drans{e, s, []) = tot — card(el{p}) N S} + 3= (Je] + 1)+ 5+ |v] 23+ el + 2.
m}

The following corollary establishes the equivalence of the notions of acceptability and
upeaceeptability. It follows directly from Theorem 5.5 and Theorem 4.6,

Corollary 5.7 A general logic progrem s up-acceptable if and only if it is scceptable.

6. Weak Up-Acceptability

Because in some cagses up-acceptability does not help to simplify the proof of termination,
in this section we generalize this notion and introduce weak up-acceptability,. We start
with an example of a program that cannot be split inte two non-empty programs satisfying
up-acceptability. Next, we introduce weak up-acceptability and establish analogous results
as for np-acceptability. Finally, we apply weak up-aceeptability for simplifving the proof of
left-termination of our example program.

6.1 An Example: Hamiltonian Path

A Hamiltonian path of a graph is an acyclic path containing all the nodes of the graph.
The following program HAMILTONIAN defines hamiltonian paths: it consists of the following
clauses

1} ham(G,P) «
path(Ni,N2,G,P),
cov{P,G).

2} cow(P,3) +
- notcov(P,G).

4) notcov(P,G) ~—

193

MARCHIORI

node(X,G), — member(X,P).
4} node(X,8) «—

member ([X,¥],6).
3) node(X,8) ~

menber ([¥,X],0).

augmented with the program ACYpaTH defining acyelic paths:

pl} path(N1,N2,G,P) ~—
pathi (N1, [%2],G,P).
p2) pathi(Nt,[N1|P1],G, [N11P1]) —.
¥3) pathl{N1, [X11P1]1,6,P) «
member { [¥1,X1],6),
- member(Y¥1, [X1|P11),
pathi(N1,[Y¥1,X1]P1],G,P).
pi) member(X, [XIY]) ~.
#5) member(X,[Y]Z]) —
member (X ,Z).

A wraph is represented by means of a list of edges. For graphs consisting only of one
nwle, we adopt the convention that they are represented by the list [[e, L]], where 1 is
a special new symbol. In the clause pl) path describes acyclic paths of a graph, and
path{nl, n2, g, p) calls the query path1{nl, 2], g,p). The second argument of pathl is used
1o construct incrementally an acvelic path connecting rl with n2: using clause p3d). the
partial path |[x{pl] is transformed into [y, 2ip1] if theve is an edge [y, x| in the graph g such
that y is not already present in l@jpl]. The construction terminates if y is equal to nl,
Lecause of clause p2). Thus the relation pathl is defined inductively by the clauses p2) and
p3), using the familiar relation member, specified by the clanses pd) and ph). Notice that,
it follows from p2) that if n1 and n2 are equal, then [11] is assumed to be an acyclic path
from el to »2, for any g.

The relation hamiy,p) is specified in terms of path and cow: it is true if p is an
acyelie path of g that covers all its nodes. The relation cow is defined as the negation
of neteov, where noteov(p, g) is true if there is 8 node of g which does not ocowr in p.
Finally, the relation node is defined in terms of member in the expected way. For instance,
ham{[[a,b]l,[b,c],[2,2),{c,b)], [a,b,c]) holds, corresponding to the path drawn in
bold in the graph of Figure 3.

The program HAMILTONIAN is not terminating, because aCYPATH is not. However,
HAMILTONIAN Is left-terminating. In order to prove this result using acceptability {Defini-
tion 4.2}, we need to find a model of HAMILTONIAN that is also a model of the completion
compi{3},4),5),pd), p5)}) of the program consisting of the clauses 3), 4), 5), p4),p3). This
is not very diffienlt, however it is not needed, as we shall see in the follow. Note also that
the uotion of up-acceptability does not help to prove lefi-termination using less semantic
imformation. Nevertheless, we can spliL HAMILTONIAN in two snbprograms: Py consisting
of ACYPATH plus clause 1), and P consisting of the remaining clanses 2) ~ 3). Note that
Py ‘almost’ extends Py, because Py contains some litevals (those with relation {member})

194

PROVING TERMINATION OF GENERAL LOGIC PROGRAMS

—

Figure 3: The Hamiltonian path of [[a,b].[b,], [a, a], [, b]]

detined in P4, Since the subprogram 5p), Gp) defining these literals is extended by both
Py and by Py \ {5p), 6p)}, it follows that lefi-termination of {3p}, 6p)} does not depend on
the termination behaviour of the rest of HAMILTONIAN, So, for proving left-termination of
HAMILTONIAN it is sufficient to show that /< Py is acceptable, that Py is acyclic, and that
the corresponding level mappings satisfy the condition in Definition 5.3. Thus, we need
only to find a model of Py ¢ Py that is also a model of comp({p4),p3)}). o

6.2 Weak Up-Acceptability

Formally, we modify up-ascceptability by considering a more general way of partitioning the
program, specified using the following notion of weak extension. Recall that for a set § of
relations, Pjg denotes the clauses of P that define the relations from 5.

Definition 8.1 (Program Weak Extension) A program P weakly extends o program R,
denoted by P >, R, i for some set § of relations we have that:

e P= P U Bg, and P extends Pg;
o f extends Pg; and

s Py P oextends Ra Py, o

Note that only the relations of § which are defined in P play a role in the above definition,
Defiuition 5.1 i a particular case of the above definition, obtained by considering B¢ to be
equal to @ (which includes the case that § = §),

Example 6.2 The program

plX) e q(X), x(X).
T(£(X)) « z(X).

wenkly extends the program

MarCcHIOR!

q{X) +- s(X), r(X).
s(X) .

This enn be seen by taking § = {r}. Then /% s p(X) — q(X), r(X}., Py is r(£(X)) ~
r(%)., P and R both extend Pg. Moreover, P (1 P is p(X) < q(X). and R Py is

q(X) ~ s(X).
s(X) —.

Finally, it is easy to check that P& Pg extends Ri: Pg. 0

Thus the notion of weak up-acceptability is obtajned from Definition 5.3 by replacing
in condition L ‘extends’ by ‘weakly extends’.

Definition 6.3 (Weak Up-Acceptability) Let | | be a level mapping for P. Let K be a
sel of clauses st P = P U R for some Py, and let § be an interpretation of P O R, P is
weakly wp-aceeptable word, |, R and I if the following conditions hold:

L. Py weakly extends A

2. P R is acceptable wot, | | pe and 1

3. R s acvelic wort. | g

4. for every ground instance H — Ly ... L, of a clause of Py, for every 1 <0 < n,

e if L, is defined in B and is not a constraint, and

e i1 k= Liy,. .., Lik, where Ly, ..., Ly arve those literals among Ly,..., L, whose
relations oceur in P R,

then |H| 2 |L;i.]

In order to prove the analog to Theorem 5.5, we need to use triples of finite multisets,
instead of pairs, with the lexicographic ordering < (X, X3, X3) < (17,15, Ya) iff either

(X Xo) < (¥, Y5) (by abuse of notation we use < also to denote the lexicographic ordering
on pairs of multisets), or X; = Y and and X3 = Y, and Xy < Y. We consider the triple:

{Qupat = Q) upt por e | [Qllupt v [[Qllepsps)

Theorem 6.4 Suppose that P is weakly up-occeptable wor.d. |, R ond I, Let @ he an up-
bounded query. Then every ldenf-devivalion for @ in P conlains only up-bounded gueries
and 18 finite,

Proof. Let S be the set of relations used to prove that PP is weakly up-acceptable wor.t.
| |, & and I. The proof is similar to the one of Theorem 5.5, except that we consider
T(Q)up.t instead of T(Q)yp 1, and we show that 7{Qg)up.y s smaller than 7(Qy -)yps in the
Iexicographic order as follows. If the relation symbol of L oceur in P* & R but not in 5,
then the first component of v{¢, Jup becomes smaller because of condition 2. Otherwise,
if the relation symbol of L occur in B then the first component of 7(Qy)yps does not

196

ProvING TERMINATION OF GEnegal Logie Proarams

increase because of condition 1, while the sccond one becomes smaller because of condition
3. Finally, if the relation symbeol of £ cccur in S, then the first and second components
of 7((Jshup,r do not increase, because of condition 1, while the third one becomes smaller
because of condition 2. 0

Example 6.5 (HAMILTONIAN is Weakly Up-Acceptable) We prove that HAMIUTONIAN
is weakly upeacceptable. Consider as upper part the program Py consisting of ACYPATH
angmented with clause 1), and as lower part the program F:

2} cov(P,G) —
- notcov(P,G).
3} noteov(P,G) —
node(X,G), — member(X,P).
1} node(X,G) +~
member ([X,Y],G).
3} node(X,6) —
member ([¥,X],G).

Take {member} as set § of relations.
1. P weakly extends Py,

2. The program P & Py, consisting of

1) ham{G,P) «
path(N1,H2,6,P).
pl) path(N1,N2,G,P} «
path1(N1,[N2],6,P).
#2) pathi(N1, [N11P1].,G, [H1IP1]) e,
»3) pathi(¥1,[X1]P1],G,P) «~
member ([¥Y1,X1],6),
- member (Y1, [X11P1]),
pathi(X1,[¥1,X11P1],G,P).
pd) member (X, [X|Y]) —.
ph) member(X,[YIZ]) —
member (X,2).

is acceptable w.r.t. the following level mapping:

fmember(s, t)]| = jti;

[pathl(nl,pl, g, p)| = |p1] + lg| + 2(gl - [p1 N gl) + 1;
[pathinl,n2 g, p)| = 3lg] + 3;

[hamig, p)| = 3lg| +4,

and the interpretation § = Ipgm U Tpoth U Tpaths U Tnemper, with:

197

MARCHIOR!

Tnam = [ham(G, P)),

Lpagn = {path(nl, n2,g,p) | gl +1 2 |pl}

Lyt = {path1(nl,pl,g,p) | p1] - L gl = Ip| = lp0 g},
Lpermber = {member{s,t) | t list s.t. s € sef{t}},

where for two lists p and g, pg denotes the list containing as elements those z which
are elements of p for which there exists a y s.t. [, 3, is an element of g.

We prove that [is a model of Py

e Consider a ground instance of the clause pl) and suppose that

I = pathl(nl, [n2], ¢.p)
Note that {[n2]] - |[n2]ng| < 1. So jp|~ png < 1. But [prg| < |gl. Then
el < gl + 1, hence I &= path(nl, n2, . p}.

e Consider a ground instance of the clause p3) and suppose that

[= member{yl, 1], g), ~member(y1. [c1ipl]}. path{nl, [y1, 21|pl], g, p)-
Thus |[y1. x1|pl)|—|[y). x1[pl]Ng| = |p| - prg', where y1 € [xr1{pl] and [y1,21] €
g. Therefore [y, x1|plINg| = 1+4|[xlpl]ng|. So |yl x1|pl] - |yl xljpl]rg| =
[alpl]] = |l21pl] gl. Then [[21ipl]] — ll«lpl] Ngl = [pl = [p N gl. Hence
I & puthi{nl, xlp1]. g.p).

s The proof for the other clanses is analogous.

Now, Negp, = (member} and Py~ = {(f),(g]}. It is routine to check that I cnpery
is o model of comp(Py).

3. P, i8 acyclic w.r.t, the level mapping:

feov(p, g)| = lpl + lg] + 3;
[notcon(p. g}l = |p| + |g| + 2
|node{s,)] = it| + 1;
lmember{s, t}] = |t

. Consider a ground instance
ham(g, p} +— path{nl, n2, g, p), covip, g).

of 1) and suppose that [k= pathinl,n2,g,p). So |g| +1 = [p|. Heoce lham(g, p}| =
Blgl + 4 = [pl + lgl + 3 = |eov(p, g)l. o

198

Proving Terminamion oF GEneral LoGie PROGRAMS

7. Low-Acceptability

In the previous two sections, we have integrated the notions of acyclicity and acceptability,
by means of a partition of the program into an upper and a lower part. We introduced the
notion of up- and weak up-acceptability, where the upper part of the program is proven to
be acceptable and the lower part acyclic. In order to treat also the converse case, Le., the
upper part being acyelic and the lower part acceptable, we introduce now the notion of low-
accepiability, We follow the structure of the previous sections: first, a motivating example is
presented, Next, we define the notion of low-aceeptability and prove some results. Finally,
we apply this notion to the program of our example.

7.1 An Example: Graph Specialization

Graph structures are used in Al for many applications, such as the representation of re-
lations, situations or problems (see ¢.g.. Bratko, 1986). Two typical operations on graphs
are find o path between fwo given nodes, and find o subgraph with some specified progerties.
The program SPECIALIZE below uses both these operations to solve the following problem.
Given two nodes ny, ny in a graph ¢, find a node n that doees not belong to any acyelic path
in g from ny to ny. The program SPECIALIZE consists of the clauses:

1) spec(N1,¥42,M4,6) «
- unspec{N1,N2,N,6).
2} unspec(N1,N2,H,G) «
path(N1,42,6,P),
member (N ,P).

angmented with the program ACYPATH of the previous section. The relation spec is spec-
ified as the negation of unspee, where unspec(nl,n2,n, g} is true if there is an acyclic
path of the graph g connecting the nodes nl and n2 and comtaining n. For instance,
speci{a,b,c,[[a,bl,b,c],[a,al, [c,b]])} holds (Figure 4).

Observe that SPECIALIZE is not terminating: for instance, the query pathi (a, [b,c] ,d,e)
has an infinite derivation obtained by choosing as input clause (a variant of) the clause p3)
and by selecting always its rightmost literal. However sPECIALIZE is lefi-terminating. In
vrider to prove this result using acceptability (Definition 4.2), we nead to find a model of
SPECIALIZE that is also a model of comp(sPrciavize), which is rather difficult. Note also
that the notions of weak up- and up-acceptability do not help to simplify the proof. How-
ever, we can split SPECIALIZE in two subprograms: PPy consisting of the clavse 1) and
consisting of the rest of the program. Note that P extends P, Therefore, in order to show
that SPECIALIZE is Jeft-terminating, it is sufficient to prove that % 3 P) i8 acyelic, that P
1 aceeptable, and that the corresponding level mappings ave suitably related.

7.2 Low-Acceptability

Formally, we introduoce the following notion of low-acceptability.

199

MARCHIOR:

1
1
|
? T

Figure 4: specla, b o, {a, bl b, ¢]. [u, a]. [c. 8]} holds

Definition 7.1 {Low-Acceptability) Let || be a level mapping for P. Let R be a set of
clases st P = PyU R for some Py, and let [be an interpretation of R. P is low-aceeploble
word |, B oaad Iif the following conditions hold:

1. P extends H;
2. P Ris acyelic wrtl || pags
A4 A is acceptable worat. | | 5 and 1

4. for overy ground instance H « Ly, ..., Ly of a clanse of P, for every 1 €8 < n, if L,
is defined in R and is not a constraint, then [H| > |L,].

A program is lew-acceptable if there exist | |, R and [s.t. P is low-acceptable w.r.t. ||,
Roand [, O

The notion of low-bowndedness is defined as in the previous section, by replacing %Qi:‘”‘l
with

QU™ == {JLil | L,..., L, is a ground instance of Q and / |= L, A...ALL}.

where L}, ... Ly are the literals of L},. .., L] | whose relations occur in R.
To prove the analogue of Theorem 3.5 for low-bounded gueries, we associate with a

low-bounded query @ a pair 7{Qow = ({Q w1 1@ iows.) of multisets, with for a
program P and an interpretation |

HQ ltonot, p = bagl nxa;::§Q§:f“‘1, ey max{Qii":"’),
where Ly, ..., Ly, are the literals of ¢ whose relations occur in P.
Theorem 7.2 Suppose thet P is low-aeceptable w.r.t. ||, B and I. Let € be o low-bounded

guery. Then every ldenf-derivation for Q in P conlains only low-bounded gueries and is
Jinite.

200

Provineg TERMINATION OF GENERAL LoGic PROGRAMS

Proof. The proof is similar to that of Theorem 3.5, where one replaces T(QQ)ups with
T owd -

The following result is a direct consequence of Theorems 7.2 and 4.8,

Corollary 7.3 A general logic program s low-acceptable {f and only f it is scceptable.

Example 7.4 (SPECIALIZE is Low-&cceptable) We show that the program SPECIALIZE
is low-acceptable. Consider the program specl=srrcialize\{1)}}. Then the proof proceeds
as follows,

1. The program {1}} extends sprcl.

2. The program {1)}©8PEC] is acyelic w.r.t. the level mapping
lspec{nl, nd, n, g} = 3gl + 5.
3. The program SPEC] is acceptable w.r.t. | | and the interpretation [, with | | defined as

in Example 6.5 for atoms with relation smewmber, pathl, path, and junspec(nl, n2, n, g)| =
gl + 4 and with 1 = Laepee U Bpars U gy U Temiber » 8822

Iuns;mr = iﬂn.ﬂpﬁf‘{jﬁ’l, .‘”“72, .‘V, G]}»
and Lo, Tparnt. 8nd Tnember ar¢ 88 before (Example 6.5).
4. Consider a ground instance
specinl, n2, n, g) « ~unspecinl, n2, n,g)
of 1. Then
lapec(nl, n2 w9} = 3gl + 6 > 3lg! + 4 = junspec{nl.n2, n, g}l.
Consider the query (@ = spec(a,b,X,[[{2,b],[b,c],[2,a]]). Because @ is low-

bounded, it has a finite ldenf-tree, with answer X # . X 3 b Notice that by using
negation as failure Q@ fonnders. O

8. A Methodology for Proving Left-Termination

Definitions 5.3, 6.3 and 7.1 provide a method for proving left-termination of & GLP, which
is summarized in Definition 8.1 below. In this section, we first discuss sdvantages and
drawhbacks of this method. Next, we introduce a methodology for proving left-termination
of GLe's that incorporates the notions we have introduced in the previous sections, Finally,
we give an example in order to Hustrate the methodology.

Definition 8.1 (& Method for Proving Left-Termination)

1. Find a maximal set # of clauses of P s.1. R forms an acyclic program and P = A UR
is 5.0, either / extends I or vice versa.

2. I R extends Py thew

201

MARCHION

{a} Prove that P & R is acceptable w.r.t, a level mapping, say | |pow. and an inter-
pretation.

(b} Use | |prg to define s level mapping | [g for B at. B is acyelic wort, | g, and 5.1,
for every ground instance H ~ Ly,..., L, of a clavse of B, for every 1 <14 < s
if L, is defined in Py then |Hlg 2 |Li]par holds.

3. 10 P extends R then:

{a) Prove that R is acyclic w.r.i. a level mapping, say | 5.

(b} Use | |g to define a level mapping | lpop for P R st P& R is acceptable
w.rt. | lpar and an interpretation I, and s.t. for every ground instance H —
Ly, oo Ly of a clause of Py, for every 1 € ¢ < n: if L, is defined in H and if
those literals among Ly, ..., L; whose relations occur in P& R, say Li,..., L,
are 5.4, [%= L‘ﬂv v *L’i&w then iHi}’HR > 3l‘liff holds. 0

An advantage if this method is that it partly overcomes a drawhack of the original
method of Apt and Pedreschi to prove left-termination, where one has o find » specialized
model of the entire program. Unfortunately, our method is not always applicable. This
happens because in point 2. we use P & R, thus discarding the literals of R occurring in
P,. These literals could be relevant for the left-termination behaviour of Py, For instance,
in the program

p = 4, p.
q e 8.

if we take P and R to be the first and second clanse, respectively, then Py extends R,
but £) B is p— p, a clearly non-seceptable program. This problem can be overcome by
considering also some semantie information about R, which leads to the following alternative
definition of up-acceptability.

Definition 8.2 (Mew Up-Acceptability) Let || be a level mupping for P. Let R be s.t.
P Pyu R for some Py, et Ty be a specialized model of R, and let Ip, be a specialized
model of P& B, P is new wp-acceptoble wort. ||, R, Iy and {p, i the following conditions
lold:
1. P extesdds H;
2. for all ground instances H «— Ly, ..., L, of clauses of P}, for every 1 < i < #, with
fi s min{{n} U {j € {L,n] | TnUlp ¥ L;}),

e if L; is defined in P & R then |H| > |Li],
e if [, Is defined in B then [H| > L,

3. B is acyelic wor.t. | . o

202

ProviNG TERMINATION OF GENERAL LOGIC PROGRAMS

Omne can check that the results we proved for up-acceptability hold as well for the above
definition. In particular, the notivn of new up-ascceptability is equivalent to the one of
acceptability. Note that here we have to find some semantic information on both the ‘upper’
and the ‘lower’ part of the program; however, information on the ‘Jower’ part is used only
on the ‘upper’ part of the program. Therefore, also in this case, less semantic information
is peeded than with the original definition of acceptability by Apt and Pedreschi. Let us
llustrate the application of new up-aceeptability in the following toy example.

Example 8.3 Consider again the program

1N p «— a, p.
2y q v~ 8.

We prove that it is new up-acceptable.
1. The program {1}} extends {2}};
2. Consider the level mapping

lpl =1, gl =1, |s| =0,

and the interpretations

Ty = {p}. Iy = 0.
Then Iy, and Ijay; are specialized models of {1}} and of {2)}, respectively. We have
that f5y U Jyyyy # ¢ and Ipl = |gl.

3. From g =1 > 0 = |8} it follows that {2}} is aevclic wr.t. || 0

Observe that Definition 8.2 is still not applicable in some cases, for instance to the
Program

=

e~ P,
) g ==

o

-

t

berause the program {1)} O {2)} has no specialized model.

Another drawback of our method is its lack of incrementality. Nevertheless, we can
define an incrementsl, bottom-up method. where the decommposition step is applied iter-
atively to the subprograms until the partition of a subprogram hecomes trivial. This is
possible because of the equivalence of up-/weak up-/ low-acceptability and acceptability.
These observations are Incorporated in the following definition, Recall that By denotes the
Herbrand base of P,

Definition 8.4 (An Incremental Method)
= Split * into n 2 1 parts, say Py, ..., B, st for every i € [I,n ~ 1

~ Py {weakly) extends Py
- either I or Py is acychie,

MarcHOR!

o Define incrementally the level mapping | g0 0p, = | U... U] |p, and the inter-
pretution Ip up, = Ip U, .. UTp, as follows.

1. {base) If P is acyelic then find the corresponding level mapping | |5 ; otherwise
prove that P is acceptable wor.t. a level mapping | |p, and an interpretation Jp, .

2. {induetion) Suppose that | |p, is defined for every 1 < k < i, and suppose that
Ip, is defined for every 1 < k < i if P, is acyclic, and for every 1 < k< i P, is
acceptable, with 1 < § < n. Then,

{a) I Piyy is acyclic then use | [p to define a level mapping | (g, for Py = P
st Py @ P s aeyelic wort. | g, and st for all ground instances H —
Foyseon L of clauses of Poy, for every 1< 5 < e, i L is defined in P, then
Hip,, 2 1Lylp,-

(b} If P is acyclic then use | |p to define a level mapping | |p,, for P OB
8.0,

LA cither Py & F; is acceptable worit. a specialized model Jp . and
[1p,,5 in this case set Ip to be By
B. or find 2 specialized model Ip of ;& Py, and a specialized model
Ip,, of Py & Post, for all ground instances H +— Ly,..., L, of
clauses of Py and for every 1 < k < 7 if Ly is defined in P, then
Hip,, > L,
it. For all ground instances H « Ly, ..., Ly of clauses of P, and for every
LSk < iiif Ly ds defined in P, then (Hip,, = | Lilp.
Above, 78 = min({m} U {j € [Lm] | Ipu. um,, ¥ L1
)

We prove that this method is correet, Le., that P is left-terminating if the above method
is applicable. To deal with non-ground queries, we use the original notion of boundedness
by Apt and Pedreschi, this time wort. the interpretation resulting from the method.

Definition 8.5 (Bounded (uery) Suppose that the partition P, ..., P, of P, RIS
and Sy, op, are obtained using the method of Definition 8.4, Let Q = Ly,..., L. Then
¢ s bounded {w.ord. || and Ip, op) i for every 1 €4 < m, the set

Z(Jgj"‘ St (L8] LY.L LY is a ground instance of Q and
Ipu.up, B L AL}

is finite, "]
Theorem 8.6 Suppose that the partition Py, Py, | |pu.ur, and Ipy, up, are obtgined
using the method of Definition 8.4. Let) be o bounded query wort. | ip_up, and Ip,, op,.

Then every ldenf-derivation of () is finite and it contains only bounded gueries,

Proof. Recall that Ip o e, = p UL UTp,. For a bounded query @ = §4,...,Qum, we de-
fine the n-tuple 7(Qrp, s, = ([Qll1p, Poor s NQlin, pror, [[Q)1n, #r) of multisets,
with for a program P, and an interpretation 1, [[Q]1p = baglmax|Ql ,... maz|Q|]),

204

Proving TERMINATION OF GENERAL LoGic PROGRAMS

where Ly, ..., Lg, are the literals of) whose relations ocour in P, The proof is similar to
the one of Theorem 5.3,)

In the following section we illustrate the application of this method.

#.1 An Example: Graph Reduction

In Example 7.4, a program is described which for a graph ¢ and two nodes n1 and n2, finds
a node n that does not belong to any acyclic path in g from nl to n2. Using this program,
we define here the program REDUCE which for a non-empty graph g and two nodes nl and
n2, computes the graph ¢ obtained from g by removing all the nodes that do not belong to
any acyelic path in g from nl to n2, and all the ares containing at least one of such nodes
{see Pigure 3).

Figure 5: rem{a.b.[[a.b], b, ¢}, [0, a]. [e. 8]}, [la, b], |2, a]]) bolds

The program REDUCE consists of the clauses:

1} red(N1,N2,61,62) —

- unif (1,1},

spec(N1,N2,N,G1),

rem{l,G1,G),

red(N{,N2,G,62).
red(N1,NH2,G,8) —

- spec(N1,N2,H,G).

3) rem(N, [[X,¥Y1161],62) —
member (N, [X,Y1}),
rem(M,G1,62).

1) rem(N,[[X,¥1161].0[X,¥]162]) -
- member(N,[X,Y1),
member (W,G1),
rem(N,G1,02).

3) rem{N,[},0]) ~.

6) unif(G,E) ».

[

MaAncHIOR!

plus the program SPECIALIZE. The relatien red{nl, n2, 4,¢"} is defined by two mutually
exclusive cases, corresponding to the elauses 1) and 2). Clause 1) deseribes the case where
there is a node that does not belong to any sevclic path in g from nl to n2: first, the
relation spee 15 used to find such a node; next, the node and the corresponding arcs are
deleted from the graph, using the relation rem; BEnally, red is called recursively on the
resulting graph. Clause 2) describes the final situation, where gy containg only nodes that
belong to some of its acyelic paths from nl to n2 . The relation rem(n, g1, g2} holds if the
graph g2 is obtained from the graph g1 by deleting all the arcs containing the node n of g1,
1t is recursively defined by the clauses 3), 4} and 5}, as one would expect.

Observe that queries of the forw red{nl. n2,| . g) fail. for every nl,n2,g.

We prove that REDUCE is left-terminating by using our bottem-up method. REDUCE
ean be partitioned in three parts:

» 1 is the program SPECT of Example 7.4;

w [consists of the clauses 3), 4). 5) of REDUCE plus the clauses 1}, pd), pb) of sPE-
CIALIZE;

o F% consists of the clauses 1), 23, and 6} of REDUCE.

It is easy to check that Py ois acyelic. Moreover, Iy extends Py, and Py weakly extends Py
w.rt. {member}. So we can apply the bottom-up approach to construct a level mapping
Clpy ey and an interpretation Jpoop, e The proof proceeds as follows.

o [is weceptable worit | {p and Iy given in FExample 7.4,

e [y Py s acyelic wert. | | p, defined as in Example 7.4 for spec and memdber, and s.1.
remi{n. gl g2y, = gl + 2.
Moreover, clause 1} of SPECIALIZE satisfies the condition relating the two level map-
pings.

s [n order to define | |p,, fp, and fp. we apply point 1.B. Consider the level mapping
redind, n2, gl g2)|p, = 3gl + 5,
fune f{g, gllpy =0,
aud let
fp, = {rem{n, gl g2} | gl, g2 lists and either g1 = g2 = |] or |g2] < |gl{}u

Ulapee(X, Y, Z, W) U {member(n, g) | g list and n in set(g)},

Iy = red(NLN2, GLG2) U {unif{a,y) | o=y},
It is easy to check that Ip, and I, are specialized models of Py & Py and Py & By,

respectively, It remains to check the tests in points 1.8 and ii.

~ Consider a ground instance

red{nl,n2, gl,g2) o~ ~unif{gl.]]}, spee{nl, 02, n, gl),
remin, gl, g).red{nl, n2, g, g2).

206

Provine TerMINATION oFf GENERAL LoGic PROGRAMS

of 1}, We have that:

red(nl.n2,g1,g2)|p, = 3igl| + 5 > 0 = |=unif(gl, | [)lr:
1

=3
ired{ni,n2, g1, 62 p, = 3lgl| + 5 = [specinl, n2, n.gl}|p;
iredinl.n2, gl g2)lp, =3

lgl] + 5 > lgd] + 2 = [remin, gl g}l py.

Now, suppose that Jp, U Tp, = —unif{gl,| |}, rem{n,gl,g). Then g and g1 are
lists, g1 # |1, and lg| < |g1]. Then,

redinl, n2, 91,62 py, = 3lgll +5 > 3lgl + 5 = |red{nl, n2, g, 42} p, -
- Consider a ground instance
red{nl,n2, g, q) + =spee{nl, n2 n, g).

of 2). We have that:
[red{nl.n2. 9,9} p, = 3lgl + 5 = |[spec(nl n2 n. g)lp,.

Observe that the presence of the literal =~unif{G1,[]} is fundamental to guarantee lefi-
wermination. Without it, lefi-termination would no longer hold (take for instance the query
red{nl.n2, ||).

9. Conclusion

Iu this paper we propoesed simple methods for proviug terminstion of a geperal logic pro-
gram, with respect to SLD-resolution with construetive negation and Prolog selection rule.
These methods combine the notions of acceptability and acyclicity. They provide a more
practical proof technique for termination, where the semantle information used is minimal-
izedd. We have Hlustrated the relevance of the methods by means of some examples, showing
in particular that SLD-resolution augmented with Chan's constructive negation is powerful
enough to formalize and implement interesting problems in non-monotonic reasoning,

We would like to conclude with an observation on related work. Apt and Pedreschi
{14y introduced a modular approsch for proving acceptability of logic programs, i.e., they
do ot deal with programs containing negated atoms. Proving lermination of general logic
programs in a modular way, using the notion of acceptability, seems a rather difficult task,
Beerause it amounts 1o building a model of the completion of a program by combining models
of the completions of its subprograms. Apt and Pedreschi do not tackle this problem. In
this paper, we have provided an alternative wayv of proving termination w.r.t. the Prolog
selection rule, where anue tries to simplify the proof by using ss little semantic information
as possible, possibly in an incremental way using the methodology illustrated in Section 8.

Acknowledgements

This research was partially supported by the Esprit Bagic Research Action 6810 {Compulog
2}, 1 would like to thank Jan Rutten for proof reading this paper, Kreysatof Apt for propos-
g the study of acyelic and acceptable programs, Frank Teusink for pleasant discussions,
as weldl as the anonyvimous referees for useful suggestions and comments on an earlier version
of this paper.

207

MARCHIORI

References
Apt, K., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9, 335 363,

Apt, K., & Bol, R. (1994). Logic programming and negation: 4 survey. The Journel of
Logic Progravaming, 19-20, 871,

Apt, K.. & Pedreschi, D, (1981). Proving termination of general prolog programs. In
Proceedings of the Int. Conf. on Theoretical Aspects of Computer Software, Vol. LNCS
326, pp. 265~-289. Springer Verlag.

Baral, C., & Gelfond, M. {1994). Logic programming and knowledge representation. The
Journal of Logic Programming, 19-20, T3-148.

Bratke, I. (1986). PROLOG Programming for Artificial Intelligenre. Addison-Wesley.

Chan. D. (1988). Constructive negation based on the completed database. In Proceedings
of the 5th Int. Conf. and Symp. on Logie Programiming, pp. 111-125,

Clark, K. {1978). Logic and Datebuses, chap. Negation as Failure, pp. 293-322. Plenum
Press, NY.

De Schreye, D, & Decorte, S. (1994). Temmination of logic programs: The never-ending
story. The Jowrnal of Logic Progromming, 19-20, 199-260.

Dershowitz, N. (1987). Termination of rewriting., Journael of Symbolic Computation, 3.
59 116.

Evaus, C. [1990). Negation as failure as an approach to the banks and medermott problem.
In Proceedings of the 2nd Internetionsl Symposivm om Al pp. 23-2T.

Kowalski, R., & Sergot, M. (1986). A logic based calculus of events. New Generation
Computing, 4, 67-95.

Marchiori, E. (1885). A methodology for proving termination of general logic programs.
In Procecdings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI'9S), pp. 356-367.

Marchiori, E. {1996). On termination of general logic programs w.r.t. constructive negation.
The Jouwrnal of Logic Programming, 26(1), 69-89.

MeCQarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of
artificial intelligence. Muehine Inlelligence, §, 463-502,

Nilason, N. (1982). Principles of Artificial Intelligence. Springer-Verlag,
Sterling, L., & Shapiro, E. (1894). The Art of Prolog. MIT Press.

208

